Вариометр магнитный - определение. Что такое Вариометр магнитный
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Вариометр магнитный - определение

Магнитный потенциал

Вариометр магнитный      

прибор для измерения изменений во времени земного магнитного поля - вариаций магнитных (См. Вариации магнитные). Измеряются вариации либо модуля полного вектора напряжённости геомагнитного поля (Т), либо вертикальной (Z) и горизонтальной (Н) составляющих этого вектора и одновременно магнитного склонения (D), то есть угла между астрономическим и магнитным меридианами. В различных В. используются чувствительные магнитные стрелки, магнитонасыщенные или квантовые датчики (см. Магнитометр и Магнитограф). Стационарные В. в магнитных обсерваториях состоят из трёх В. (Z, Н, D) с магнитными стрелками и регистратора для фотографической записи их показаний. Полевые В. записывают вариации Z или модуля Т для учёта их при магниторазведочных работах. Короткопериодный В. измеряет вариации Н при изучении строения земной коры магнитотеллурическим - методом электромагнитной разведки (См. Электромагнитная разведка).

Лит.: Яновский Б. М., Земной магнетизм, ч. 2, Л., 1963: Логачев А. А., Магниторазведка, 3 изд., Л., 1968.

А. А. Логачев.

Магнитный момент         
ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитный дипольный момент

основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классической теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М) силы тока i на площадь контура σ (М = i σ/c в СГС системе единиц (См. СГС система единиц), с - скорость света). Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = m l, где m - эквивалентный Магнитный заряд контура, а l - расстояние между "зарядами" противоположных знаков (+ и -).

М. м. обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. М. м. элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - Спина. М. м. ядер складываются из собственных (спиновых) М. м. образующих эти ядра протонов и нейтронов, а также М. м., связанных с их орбитальным движением внутри ядра. М. м. электронных оболочек атомов и молекул складываются из спиновых и орбитальных М. м. электронов. Спиновый магнитный момент электрона mсп может иметь две равные и противоположно направленные проекции на направление внешнего магнитного поля Н. Абсолютная величина проекции

где μв= (9,274096 ±0,000065)·10-21эрг/гс - Бора магнетон, , где h - Планка постоянная, е и me - заряд и масса электрона, с - скорость света; SH - проекция спинового механического момента на направление поля H. Абсолютная величина спинового М. м.

где s = 1/2 - спиновое квантовое число (См. Квантовые числа). Отношение спинового М. м. к механическому моменту (спину)

,

так как спин

.

Исследования атомных спектров показали, что mНсп фактически равно не mв, а mв (1 + 0,0116). Это обусловлено действием на электрон так называемых нулевых колебаний электромагнитного поля (см. Квантовая электродинамика, Радиационные поправки).

Орбитальный М. м. электрона mорб связан с механическим орбитальным моментом орб соотношением gopб = |mорб| / |орб| = |e|/2mec, то есть Магнитомеханическое отношение gopб в два раза меньше, чем gcп. Квантовая механика допускает лишь дискретный ряд возможных проекций mорб на направление внешнего поля (так называемое Квантование пространственное): mНорб = mlmв, где ml - магнитное квантовое число, принимающее 2l + 1 значений (0, ±1, ±2,..., ±l, где l - орбитальное квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (gcп ¹ gopб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механическому моменту J. Поэтому часто рассматривают слагающую полного М. м. на направление вектора J, равную

где gJ - магнитомеханическое отношение электронной оболочки, J - полное угловое квантовое число.

М. м. протона, спин которого равен

должен был бы по аналогии с электроном равняться

,

где Mp - масса протона, которая в 1836,5 раз больше me, mяд - ядерный магнетон, равный 1/1836,5mв. У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона mp = 2,7927mяд, а нейтрона mn = -1,91315mяд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфические ядерные взаимодействия (см. Ядерные силы, Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными mяд или mp и mn. Таким образом, М. м. ядра калия равен -1,29 mяд. Причиной этой неаддитивности является влияние ядерных сил, действующих между образующими ядро нуклонами. М. м. атома в целом равен векторной сумме М. м. электронной оболочки и атомного ядра.

Для характеристики магнитного состояния макроскопических тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. называется намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, ферри- и антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) - носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абсолютном нуле температуры) на число атомов - носителей М. м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора mв оказываются дробными (например, в переходных d-металлах Fe, Со и Ni соответственно 2,218 mв, 1,715 mв и 0,604 mв) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (например, ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР, ФМР и т.п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., который определяется через найденную на опыте постоянную Кюри, входящую в выражение для Кюри закона или Кюри - Вейса закона (см. Парамагнетизм).

Лит.: Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Ландау Л. Д. и Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм микрочастиц, М., 1973.

С. В. Вонсовский.

Магнитный момент         
ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитный дипольный момент
Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная физическая величина, характеризующая магнитные свойства вещества, то есть способность создавать и воспринимать магнитное поле. Вычисляется как

Википедия

Векторный потенциал электромагнитного поля

Ве́кторный потенциа́л электромагни́тного по́ля, A (вектор-потенциал, магнитный потенциал) — в электродинамике, векторный потенциал, ротор которого равен магнитной индукции:

B = rot A = × A . {\displaystyle \mathbf {B} =\operatorname {rot} \mathbf {A} =\nabla \times \mathbf {A} .}

Определяется с точностью до градиента произвольной скалярной функции ψ {\displaystyle \nabla \psi } . Измеряется в Тл {\displaystyle \cdot } м (СИ) или Гс {\displaystyle \cdot } см (СГС).

Вектор-потенциал (A) является пространственной компонентой 4-вектора электромагнитного потенциала.

Что такое Вари<font color="red">о</font>метр магн<font color="red">и</font>тный - определение